Coating of meso-porous metallic membranes with oriented channel-like fine pores by pulsed laser deposition.

نویسندگان

  • D Mukherji
  • J Lackner
  • N Wanderka
  • N Kardjilov
  • O Näth
  • S Jäger
  • F Schmitz
  • J Rösler
چکیده

There is increasing demand to functionalize meso- and nanoporous materials by coating and make the porous substrate biocompatible or environmentally friendly. However, coating on a meso-porous substrate poses great challenges, especially if the pore aspect ratio is high. We adopted the pulsed laser deposition (PLD) method to coat Ni(3)Al-based meso-porous membranes, which were fabricated from a single-crystal Ni-based superalloy by a unique selective phase dissolution technique. These membranes were about 250 µm thick and had channel-like pores (∼200 nm wide) with very high aspect ratio. Two different coating materials, i.e. diamond-like carbon (DLC) and titanium, were used to coat these membranes. High energy C or Ti ions, produced in the plasma plume by the PLD process, penetrated the channel-like pores and deposited coatings on the pore walls deep inside the membrane. The thickness and the quality of coatings on the pore walls were examined using the dual-beam system. The coating thickness, of the order of 50 nm, was adherent to the pore walls and was quite uniform at different depths. The carbon and the Ti deposition behaved quite similarly. The preliminary experiments showed that the PLD is an adequate method for coating fine open cavities of complex geometry. Simulations based on stopping and the range of ions in matter (SRIM) calculations helped in understanding the deposition processes on pore walls at great depths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane

In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In...

متن کامل

FABRICATION AND CHARACTERIZATION OFHIGH PERFORMANCE CERAMIC MEMBRANE HAVINGNANOMETRE PORES

Abstract: In this study, carbon nanotubes (CNTs) were grown directly in the pores of micro porous pyrex membranesand consequently ceramic membranes with very fine pores and high porosity were achieved. Our experiment was donein two stages. Initially cobalt powder with different percent was homogeneously mixed with pyrex powder. In order toproduce row membranes, each of these mixtures were compa...

متن کامل

n-SiO2 Embedded HA/TiO2 Composite Coatings Deposited on Pure Titanium Substrate by Micro-Arc Oxidation

As orthopaedic and dental metallic implant materials, titanium and titanium alloys are widely used due to their relatively low modulus, good fracture toughness, excellent strenthto-weight ration, and superior biocompatibility and corrosion resistance (Long and Rack, 1998). They have become the first choice above all other candidate metallic implant materials such as Co-Cr-Mo alloys, stainless s...

متن کامل

Fabrication and Characterization Ofhigh Performance Ceramic Membrane Having Nanometre Pores

In this study, carbon nanotubes (CNTs) were grown directly in the pores of micro porous pyrex membranes and consequently ceramic membranes with very fine pores and high porosity were achieved. Our experiment was done in two stages. Initially cobalt powder with different percent was homogeneously mixed with pyrex powder. In order to produce row membranes, each of these mixtures were compacted in...

متن کامل

The effect of the deposition temperature on the low-field magnetoresistance of polycrystalline La0.5Sr0.5MnO3 thin films produced by pulsed laser deposition

Pulsed laser deposition of La0.5Sr0.5MnO3 (LSMO) thin films on quartz wafers at different deposition temperatures has been carried out. The microstructural, electrical and low-field magnetotransport properties of these films are evaluated as functions of the deposition temperature. The film crystallinity depends substantially on the deposition temperature. Significantly enhanced low-field magne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2008